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surface in the planar Abraham model 
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Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
11001 Beograd, PO Box 550, Yugoslavia 

Received 26 November 1987. in final form 15 March 1988 

Abstract. A recently developed renormalisation group approach to interface pinning 
problems is generalised to deal with the depinning from the defect at a finite distance z 
removed from the surface in the planar Abraham model. The phase diagrams and the 
incremental defect free energies over the whole range of temperatures and distances z are 
obtained. The agreement with exact results, when available, is quite satisfactory. 

1. Introduction 

The binding of an interface by a line of defect bonds in the planar Abraham model 
is important to depinning (wetting) transitions, and has been extensively studied 
(Abraham 1980, 1981a, b, Burkhardt 1981, Chalker 1981, Kroll 1981, Chui and Weeks 
1981, van Leeuwen and Hilhorst 1981, SvrakiC 1983, MihajloviC and SvrakiC 1983, 
Abraham and SvrakiC 1986). In particular, an exact solution by Abraham (1980,1981b) 
indicates that the defect adjacent to one surface of the lattice will bind an interface 
at low enough temperatures, but as the temperature is increased above a certain value 
Tw (below the bulk critical temperature T,) the interface depins into the bulk. Exactly 
at Tw the depinning (wetting) transition takes place and the defect specific heat exhibits 
a jump discontinuity. If the defect is located in the interior of the lattice, however, 
depinning will not occur. In this case at the bulk critical temperature defect thermody- 
namics shows non-universal behaviour (Bariev 1979, McCoy and Perk 1980). We shall 
distinguish these two cases as: (i) the case with boundary defect and (ii) the case with 
the internal defect. 

The purpose of this work is to generalise a position-space renormalisation group 
( R G )  method applied earlier (Svrakii: 1983, MihajloviC and SvrakiC 1983) to the original 
wetting problem of Abraham (1980) to deal with the binding (and unbinding) of the 
interface by the defect at a finite distance removed from the surface of the planar Ising 
lattice. Although this problem represents a slightly generalised version of the original 
Abraham model, which interpolates between the cases ( i )  and (ii) above, a generalisa- 
tion is needed in order to deal with the defects at the intermediate distances from the 
surface. This model we describe now. 

Consider a square, two-dimensional, nearest-neighbour Ising model with periodic 
boundary conditions in one direction and antiperiodic in the other. Suppose, in 
addition, using z to label the position of the defect, with z = 1 describing the position 
adjacent to the surface, that a ladder of defect bonds is located at a distance z from 
the surface in the system, as shown in figure 1. Defect couplings Kd are parametrised 
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Figure 1. The geometry of the model considered. Couplings K ,  and K are shown by wavy 
and full lines respectively. The numbers z = 1 , 2 , .  . . label the position of the defect in 
order of increasing distance from the surface. 

as Kd = a K  (Os a S l ) ,  where the parameter a measures the amount by which defect 
couplings are weaker than bulk couplings K .  Clearly, if ( i)  z = 1 this model corresponds 
to the original model for depinning from the boundary defect and (ii) when z = 00 the 
defect is internal. 

The remainder of this paper is organised as follows. In 0 2 we motivate and develop 
our RG scheme. Section 3 presents a discussion of the wetting phase diagram. The 
results for the interface thermodynamic functions are presented in P4. Section 5 
contains our principal conclusions. 

2. Position-space RG for wetting in the d = 2 Abraham model 

The first and crucial question which we shall now discuss is the choice of our RG 

scheme which is dictated by the following observation. In order to understand a wide 
variety of phenomena observed in coexisting phases within the RG context, Klein et 
a1 (1976) have shown that any satisfactory RG scheme should have a low-temperature 
recursion formula of the form K'""' = b d - ' K ' " ) ,  up to exponentially small corrections, 
where b is the change in length scale of the RG transformation and d is the dimension 
of space. Since the wetting transitions are examples of coexistence singularities located 
along the bulk phase boundary, any appropriate RG scheme should display above 
low-temperature behaviour in order to adequately reproduce the physical content of 
the Abraham model. According to the above criteria, in what follows we shall consider 
only a first-order cumulant expansion approximation (see, e.g., Burkhardt and van 
Leeuwen 1982), where the new nearest-neighbour interaction is K'"'  x (number of 
bonds connecting the two cell blocks) for K'"' large, i.e., K ( " + ' )  = b d - ' K ' " '  as required. 
If the low-temperature recursion relation is K'""' = bd- 'K(" '+some constant, as is 
the case in Migdal-Kadanoff ( M K )  and the cell-cluster approach, then this constant 
will accumulate with iterations and bring about a large error in the calculations of all 
thermodynamic properties of the Abraham model. Unfortunately, this is brought about 
by the majority rule projection operator which is used as standard in the cell-cluster 
approach, while in the M K  scheme this constant takes into account the disconnected 
spins that result from the bond shifting. In  order to improve the cell-cluster approach 
one would have to modify the projection operator and to make a careful choice of 
boundary conditions for the finite cluster as emphasised for the surface problems by 
SvrakiC et a1 (1980). 
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We now consider how a position-space RG method has to be generalised in order 
to study the model just described. The generalised method is based on the cumulant 
expansion and proceeds in two stages: (i) the defect at a distance z is renormalised 
towards the surface in n(z)  steps as indicated in figure 2; (ii) the model we consider 
becomes the original Abraham model with the renormalised couplings, and therefore 
from that point on recursion relations obtained earlier (SvrakiC 1983) are used with 
those couplings as the initial ones. To implement the calculation described above, the 
RG scheme, in the first stage, compels us to introduce new couplings K I .  These 
couplings belong to the horizontal bonds adjacent to the surface, with z = 1. Let us 
then consider the defect at a distance z from the surface and let z E (2"-', 2"], where 
m 2 1. Now, the defect becomes a boundary one in n(z)  = m steps or z (  m) = 1, where 
z (n)  indicates generally the position of the given bond in the renormalised system 
after n iterations. The first-order cumulant RG recursion relations in the three- 
dimensional parameter space ( K ,  K d ,  K , )  are 

Os n <  m-1  (1) 

O s n s m - 1  (2) 

z ( n )  = 1 O ~ n s m - 2  (3) 

z ( n ) = 2  O s n s m - 2  (4) 

( 5 )  

where ( S ' " ' )  is the nth iterate of the average spin in the basic 2 x 2 block in the bulk 
and (SG))  is the nth iterate of the average spin in the block immediately adjacent to 

Kl"+l) =2K'"'(S'fl))2 

~ y + l l  = 2 ~ r 1 ) ( ~ l n ' ) ?  

~ ; " + l l  = 2 ~ : " 1 ( ~ ( " 1 )  

K(I"*l) = 2K',"'(SEl)(S'")) 

K I;" 1 = 2~ I;" - 1 l(s1y" -- 1 ))(s( m - I 1) 

--c 
X X X X X --- 

Figure 2. Successive steps of the generalised RG procedure for the defect at the distance 
1=9  ( m  =4) as explained in the text. Couplings K, K ,  and K ,  are shown by full, wavy 
and broken lines respectively. 
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the surface which is topologically equivalent to the basic 3 x 1 block on the triangular 
lattice due  to the boundary conditions. With the modified majority rule projection 
operator (SvrakiC 1983) we have ( S ' " ' )  = (exp (4K ' " ' )+p) / ( exp  ( 4 K ' " ' ) + 6 +  
exp ( -4K""))  where p is some adjustable parameter and 

(SE)) = exp ( 2 K  i n '  + K'" ' ) / (exp  (2K:" '  + K ' " ' )  + 2 exp ( -  K ' " ' )  + exp ( - 2 K : " '  + K ' " ' ) ) .  

With p = pe  = 4 f i  - 3, the bulk recursion relation (1) yields the exact critical coupling 
K ,  = In( 1 +a). The latter choice of parameter is convenient as long as one is 
interested in the global behaviour. The second stage of the RG scheme starts in a point 
(K '" ' ) ,  K:"") in the ( K ,  Kd)  plane after the first m iterations. The recursion relations 
for this stage of the renormalisation procedure are (SvrakiC 1983) 

wmtn -' ( 6 )  

) ( 7 )  

K(m+nl= 2 ~ ( m + n - l  I 

2K(dn+fl-l I ( S ( m + n - l )  ,L""'= 
where n 3 1. In figure 2, it is indicated how the renormalisation scheme proceeds in 
the both stages for the z = 9 ( m  = 4). 

3. Wetting phase diagrams 

The wetting transition phase diagram is obtained from the global behaviour of the RG 

flows in the parameter space ( K d ,  K ). The way in which our recursion relations lead 
to this phase diagram can be obtained from simple arguments based on the following 
important property of equations (6) and (7). A closer inspection of these equations 
shows the existence of a transient region in which, because of the inequality (S("'+"')'< 
(S'"'"')< 1, KL"+"' will grow with iterations faster than K("'+"). It can be seen that, 
even though initially KLm"< K"'", the flows will be such that after a certain number 
oftransient iterations n the coupling KL'"+") may exceed the coupling K'mtn'. However, 
if the value of the coupling K'" is sufficiently large then (S'"'+"') will approach unity 
after only a few iterations and  Kim;"+"' will not exceed K'""'' since they grow by a 
factor of two at each step near the fixed point at T = 0. Therefore, after infinitely many 
iterations one either obtains KLm'< IC'%', indicating that the interface is pinned to the 
defect or  KL='> K'"' when the interface is depinned. 

The wetting transition occurs when (SvrakiE 1983) 

giving the wetting transition temperature Tw(a,  z ) ,  for a given value of defect parameter 
a and  distance z, as the initial value of K .  The RG phase diagram, for the defect at a 
distance z from the surface, is calculated by iterating equations (6) and  ( 7 ) :  

thus giving (by equating equations (9) and  (10)) 
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which is convergent since (S"")+ 1 as n + w  for any T <  T,. Figure 3 shows the 
depinning transition phase diagram obtained from (11). Note that the phase diagram 
exhibits quite resonable physical behaviour: as z increases, the region above the curves, 
where the interface is depinned, reduces and vanishes as Z + W .  This means that as z 
increases the defect becomes more and more efficient at pinning the interface and that 
for z = a?, the case of the internal defect, the interface will be pinned for all temperatures 
and depinning will not occur, in agreement with the exact result of Abraham (1981b). 
In  order to show that equation (1  1) encompasses cases ( i )  and (ii) mentioned above, 
it is useful to describe the picture behind it. I t  is easy to see that the contributions to 
the numerator in (11) come from both stages of the RG scheme and that all members 
of the sequence {(S"")} are associated with the blocks to the right of the defect. The 
contributions to the denominator in (1 1) can only come from the first stage and the 
first ( m  - 1) members of the sequence { ( S ' " ) ) }  and (SE)) are associated with the blocks 
to the left of the defect. For z = 1, we have (S) = 1 for the block immediately to the 
left of the defect, due to the boundary conditions, and  (11) reduces to 

N 

which is just equation (9) of SvrakiC (1983). Now, in the case of the internal defect 
a ( w ) +  1, since m+co all members of the sequence{(S'"')} contribute to the 
denominator in (1 l) ,  with the implication that the interface always remains pinned. 
We can also quickly deal with the case of generalised wetting (SvrakiC 1983), if we let 
all the bonds to the right of the defect to have values K 2  and those to the left, values 
K ,  with the obvious substitutions ( S )  + (S,) and (S) + (SI) respectively. With K ,  # K 2 ,  
we shall take z = and since all members of the  sequence { (S? ' )}  and {($"I)} contribute 
to the numerator and  denominator in (11) respectively, (11) reduces to 

0 0.5 1 .o 
a 

Figure 3. Depinning transition phase diagram obtained from RG calculation, equation (9). 
The broken curve is the exact result (Abraham 1980) for z = 1.  The interface is pinned in 
the regions under the curves. 
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which is just equation (14) of SvrakiC (1983), and in a good agreement with the exact 
result (Abraham and SvrakiC 1986) indicating that the interface unbinds from the 
internal defect whenever K ,  f K 2 .  

4. Defect thermodynamic functions 

We now turn to the calculation of defect thermodynamic functions. In particular the 
incremental defect free energy fd( K ,  K , ,  z) is obtained from the ratio (Abraham 1980) 

where Z+- is the partition function for our model with antiperiodic boundary condi- 
tions, while Z,, is that for the model with periodic boundary conditions. Using 
definition (14) and recursion relations (6) and (7) we get (MihajloviC and SvrakiC 1983) 

Below the depinning transition temperature Tw(a, z), K:"'+")< Kc"+"'  for all values 
of n. The defect free energy takes the usual Onsager (1944) values for temperatures 
T >  T,(a, z), in agreement with the exact result of Abraham (1980). In figure 4 we 
showf,( K ,  K d r  z )  divided by -2K ,  obtained from equation (15). Note thatfd(K, K , ,  z) 
merges with Onsager's surface tension at Tw( a, z) and that fd( K ,  K , ,  z )  approaches 
T, always with the same angle independent of a ( z )  for finite z showing universal 
behaviour and that fd(K, Kd,  z) approaches T, with an angle depending on a(Q3) 
(MihajloviC and SvrakiC 1983), i.e. behaviour at T =  T, is non-universal (McCoy and 
Perk 1980). 

0 1 0  2.0 1 / K ,  
1/K 

Figure 4. Incremental defect free energy for the defect at the position z = 3, obtained via 
the RG method from (13). The broken curve is the exact result for Onsager's surface tension. 
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5. Conclusions 

We have generalised a position-space RG scheme introduced previously by SvrakiC 
(1983) to the investigation of (i) wetting phase diagrams and ( i i )  interface thermo- 
dynamics of the planar Abraham model with the defect removed from the surface. 
The phase diagrams and the incremental defect free energies over the whole range of 
temperatures and distances z are obtained. The agreement with exact results (when 
available) is quite satisfactory. It is to be noted that all quantities we have calculated 
are smoothly dependent on z and behave just as one qualitatively expects. We conclude 
that the position-space RG method presented in this work can be successfully applied 
to interface problems. Further extension of this method to more interesting d = 3 
systems appears feasible. 
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